1. Coach Harris measures the heights of the children on his third-grade basketball team in inches. The heights are shown on the line plot below.

Heights of Children on Third-Grade Basketball Team

- There are 15 children on the team. Each \times stands for one child, and there are 15 \times's. I counted the \times's.

- There are 6 children less than 53 inches tall.

- Coach Harris says that the most common height for the children on his team is $53\frac{1}{2}$ inches. Is he right? Explain your answer. No. He's not right. There are 2 most common heights, 52 inches and $53\frac{1}{2}$ inches because they both have the most children - 3.

- Coach Harris says that the player who does the tip-off in the beginning of the game has to be at least 54 inches tall. How many children could do the tip-off?

4 children could do the tip-off.
2. Miss Vernier's class is studying worms. The lengths of the worms in inches are shown in the line plot below.

![Line Plot of Worm Lengths]

Lengths of Worms

<table>
<thead>
<tr>
<th>3</th>
<th>3(\frac{1}{4})</th>
<th>3(\frac{2}{4})</th>
<th>3(\frac{3}{4})</th>
<th>4</th>
<th>4(\frac{1}{4})</th>
<th>4(\frac{2}{4})</th>
<th>4(\frac{3}{4})</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Length in Inches

X = 1 worm

a. How many worms did the class measure? How do you know?

The class measured 30 worms. Each X stands for 1 worm, and there are 30 X's in the line plot.

b. Cara says that there are more worms 3\(\frac{3}{4}\) inches long than worms that are 3\(\frac{2}{4}\) and 4\(\frac{1}{4}\) inches long combined. Is she right? Explain your answer.

There are 6 worms that are 3\(\frac{3}{4}\) inches and 8 worms that are 3\(\frac{2}{4}\) and 4\(\frac{1}{4}\) inches long. Cara is not right because 6 is less than 8.

c. Madeline finds a worm hiding under a leaf. She measures it, and it is 4\(\frac{3}{4}\) inches long. Plot the length of the worm on the line plot.