Use the RDW process to solve.

1. Tameka ran $2\frac{5}{8}$ miles. Her sister ran twice as far. How far did Tameka's sister run?

 Tameka: $2 \frac{5}{8}$

 Sister: $2 \frac{5}{8}$

 $2 \frac{5}{8} + 2 \frac{5}{8} = 2 \frac{5}{8} + 2 \frac{5}{8} = 4 \frac{10}{8} = 5 \frac{2}{8}$

 Tameka's sister ran $5\frac{2}{8}$ miles.

2. Natasha's sculpture was $5\frac{3}{16}$ inches tall. Maya's was 4 times as tall. How much shorter was Natasha's sculpture than Maya's?

 Natasha's sculpture: $5 \frac{3}{16}$

 Maya's sculpture: $5 \frac{3}{16} 5 \frac{3}{16} 5 \frac{3}{16} 5 \frac{3}{16}$

 $3 \times 5 \frac{3}{16} = 3 \times (5 + \frac{3}{16}) = (3 \times 5) + (3 \times \frac{3}{16}) = 15 + \frac{9}{16} = 15 \frac{9}{16}$

 Natasha's sculpture was $15 \frac{9}{16}$ inches shorter than Maya's sculpture.

3. A seamstress needs $1\frac{5}{8}$ yards of fabric to make a child's dress. She needs 3 times as much fabric to make a woman's dress. How many yards of fabric does she need for both dresses?

 Child's dress: $1 \frac{5}{8}$

 Woman's dress: $1 \frac{5}{8} 1 \frac{5}{8} 1 \frac{5}{8}$

 $4 \times \left(1 + \frac{5}{8}\right) = (4 \times 1) + (4 \times \frac{5}{8}) = 4 + \frac{20}{8} = 4 + 2 + \frac{4}{8} = 6 \frac{4}{8}$

 The seamstress needs $6 \frac{4}{8}$ yards of fabric for both dresses.
4. A piece of blue yarn is $5\frac{2}{3}$ yards long. A piece of pink yarn is 5 times as long as the blue yarn. Bailey tied them together with a knot that used $\frac{1}{3}$ yard from each piece of yarn. What is the total length of the yarn tied together?

\[
(6 \times 5\frac{2}{3}) = (6 \times 5) + (6 \times \frac{2}{3}) = 30 + \frac{12}{3} = 34
\]

\[
34 - \frac{2}{3} = 33\frac{1}{3}
\]

The total length of the yarn tied together is $33\frac{1}{3}$ yards.

5. A truck driver drove $35\frac{2}{10}$ miles before he stopped for breakfast. He then drove 5 times as far before he stopped for lunch. How far did he drive that day before his lunch break?

\[
6 \times 35\frac{2}{10} = (6 \times 35) + (6 \times \frac{2}{10}) = 210 + \frac{12}{10} = 211\frac{2}{10}
\]

The truck driver drove $211\frac{2}{10}$ miles before his lunch break.

6. Mr. Washington's motorcycle needs $5\frac{5}{10}$ gallons of gas to fill the tank. His van needs 5 times as much gas to fill it. If Mr. Washington pays $3 per gallon for gas, how much will it cost him to fill both the motorcycle and the van?

\[
6 \times 5\frac{5}{10} = (6 \times 5) + (6 \times \frac{5}{10}) = 30 + \frac{30}{10} = 33
\]

\[
\frac{33}{3} \times 99 = 99
\]

It will cost $99 for Mr. Washington to fill up his motorcycle and his van.