1. A group of children measured the lengths of their shoes. The measurements are shown in the table. Make a line plot to display the data.

<table>
<thead>
<tr>
<th>Students</th>
<th>Length of Shoe (in inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collin</td>
<td>8 1/2</td>
</tr>
<tr>
<td>Dickon</td>
<td>7 3/4</td>
</tr>
<tr>
<td>Ben</td>
<td>7 1/2</td>
</tr>
<tr>
<td>Martha</td>
<td>7 3/4</td>
</tr>
<tr>
<td>Lilias</td>
<td>8</td>
</tr>
<tr>
<td>Susan</td>
<td>8 1/2</td>
</tr>
<tr>
<td>Frances</td>
<td>7 3/4</td>
</tr>
<tr>
<td>Mary</td>
<td>8 3/4</td>
</tr>
</tbody>
</table>

2. Solve each problem.
 a. Who has a shoe length 1 inch longer than Dickon? Mary
 b. Who has a shoe length 1 inch shorter than Susan? Ben
c. How many quarter inches long is Martha’s shoe length?

\[7 \frac{3}{4} = (7 \times \frac{4}{4}) + \frac{3}{4} = \frac{28}{4} + \frac{3}{4} = \frac{31}{4} \]

Martha’s shoe is \(\frac{31}{4} \) quarter inches long.

\[\text{\(\frac{31}{4} \) inch} \]

\[\frac{1}{4} \text{ inch} \]

d. What is the difference, in inches, between Lilias’s and Martha’s shoe lengths?

\[8 - 7 \frac{3}{4} = \frac{1}{4} \]

\[\frac{8}{7} \frac{3}{4} \]

\[7 \frac{1}{2} < 7 \frac{3}{4} \]

e. Compare the shoe length of Ben and Frances using \(>, <, \) or \(= \).

\[7\frac{1}{2} < 7\frac{3}{4} \]

f. How many students had shoes that measured less than 8 inches?

4 students

g. How many children measured the length of their shoes?

8 children

h. Mr. Jones’s shoe length was \(\frac{25}{2} \) inches. Use \(>, <, \) or \(= \) to compare the length of Mr. Jones’s shoe to the length of the longest student shoe length. Who had the longer shoe?

\[\frac{25}{2} \]

\[12 \frac{1}{2} \]

Mr. Jones had the longer shoe.

3. Using the information in the table and on the line plot, write a question you could solve by using the line plot. Solve.

Answers will vary.