1. The chart to the right shows the distance fourth graders in Ms. Smith's class were able to run before stopping for a rest. Create a line plot to display the data in the table.

<table>
<thead>
<tr>
<th>Student</th>
<th>Distance (in miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>2 1/2</td>
</tr>
<tr>
<td>Arianna</td>
<td>3 1/4</td>
</tr>
<tr>
<td>Bobbi</td>
<td>1 1/8</td>
</tr>
<tr>
<td>Morgan</td>
<td>5 1/8</td>
</tr>
<tr>
<td>Jack</td>
<td>2 1/8</td>
</tr>
<tr>
<td>Saisha</td>
<td>1 1/4</td>
</tr>
<tr>
<td>Tyler</td>
<td>2 1/4</td>
</tr>
<tr>
<td>Jenny</td>
<td>5 1/8</td>
</tr>
<tr>
<td>Anson</td>
<td>2 1/8</td>
</tr>
<tr>
<td>Chandra</td>
<td>2 1/8</td>
</tr>
</tbody>
</table>
2. Solve each problem.
 a. Who ran a mile farther than Jenny?
 \[\frac{5}{8} + 1 = \frac{13}{8} \]
 Morgan
 b. Who ran a mile less than Jack?
 \[2 \frac{5}{8} - 1 = \frac{13}{8} \]
 Morgan
 c. Two students ran exactly 2 \(\frac{1}{4} \) miles. Identify the students. How many quarter miles did each student run?
 Saisha and Anson \(2 \frac{1}{4} = \frac{9}{4} \)
 They ran 9 quarter miles. \(\frac{\text{8}+\text{4}}{\text{4}} \)
 d. What is the difference, in miles, between the longest and shortest distance run?
 \[2 \frac{5}{8} - \frac{3}{8} = 2 \text{ miles} \]
 2 miles is the distance between the longest and shortest distance run.
 e. Compare the distances run by Arianna and Morgan using >, <, or =.
 \[1 \frac{3}{4} > 1 \frac{5}{8} \text{ because } 1 \frac{3}{4} = 1 \frac{6}{8} \]
 Arianna ran farther.
 f. Ms. Smith ran twice as far as Jenny. How far did Ms. Smith run? Write her distance as a mixed number.
 \[2 \times \frac{5}{8} = \frac{10}{8} = 1 \frac{2}{8} \]
 Ms. Smith ran 1 \(\frac{2}{8} \) miles.
 g. Mr. Reynolds ran 1 \(\frac{3}{10} \) miles. Use >, <, or = to compare the distance Mr. Reynolds ran to the distance that Ms. Smith ran. Who ran farther?
 Mr. Reynolds ran farther. \(1 \frac{3}{10} > 1 \frac{2}{8} \)
 \[\frac{3}{10} \times \frac{4}{4} = \frac{12}{40} \]
 \[\frac{2}{8} \times \frac{5}{5} = \frac{10}{40} \]

3. Using the information in the table and on the line plot, develop and write a question similar to those above. Solve, and then ask your partner to solve. Did you solve in the same way? Did you get the same answer?
 Example:
 How much farther did Jack need to run to reach 3 miles?
 \[2 \frac{5}{8} + n = 3 \]
 \[\frac{5}{8} + \frac{3}{8} = 1 \text{ whole so he needs to run } \frac{3}{8} \text{ more miles.} \]
 My partner counted on the line plot and got the same answer.