1. Use the folded paper strip to mark points 0 and 1 above the number line, and $\frac{0}{2}$, $\frac{1}{2}$, and $\frac{2}{2}$ below it.

Draw one vertical line down the middle of each rectangle, creating two parts. Shade the left half of each.

Partition with horizontal lines to show the equivalent fractions $\frac{2}{4}$, $\frac{3}{6}$, $\frac{4}{8}$, and $\frac{5}{10}$. Use multiplication to show the change in the units.

\[
\frac{1}{2} = \frac{1 \times 2}{2 \times 2} = \frac{2}{4} \quad \frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \quad \frac{1}{2} = \frac{1 \times 4}{2 \times 4} = \frac{4}{8} \quad \frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10}
\]

2. Use the folded paper strip to mark points 0 and 1 above the number line, and $\frac{0}{3}$, $\frac{1}{3}$, $\frac{2}{3}$, and $\frac{3}{3}$ below it.

Follow the same pattern as Problem 1, but with thirds.

\[
\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6} \quad \frac{1}{3} = \frac{1 \times 3}{3 \times 3} = \frac{3}{9} \quad \frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12} \quad \frac{1}{3} = \frac{1 \times 5}{3 \times 5} = \frac{5}{15}
\]
3. Continue the pattern with 3 fourths.

\[\frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \]
\[\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12} \]
\[\frac{3}{4} = \frac{3 \times 4}{4 \times 4} = \frac{12}{16} \]
\[\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20} \]

4. Continue the process and model 2 equivalent fractions for 6 fifths.

\[\frac{6}{5} = \frac{6 \times 2}{5 \times 2} = \frac{12}{10} \]
\[\frac{6}{5} = \frac{6 \times 3}{5 \times 3} = \frac{18}{15} \]