1. Complete the sentences with the correct number of units, and then complete the equation.

 a. 4 groups of \(\underline{4} \) tenths is 1.6.
 \[1.6 ÷ 4 = \underline{0.4} \]
 \[16 \text{ tenths} ÷ 4 = 4 \text{ tenths} \]

 b. 8 groups of \(\underline{4} \) hundredths is 0.32.
 \[0.32 ÷ 8 = \underline{0.04} \]
 \[32 \text{ hundredths} ÷ 8 = 4 \text{ hundredths} \]

 c. 7 groups of \(\underline{12} \) thousandths is 0.084.
 \[0.084 ÷ 7 = \underline{0.012} \]
 \[84 \text{ thousandths} ÷ 7 = 12 \text{ thousandths} \]

 d. 5 groups of \(\underline{4} \) tenths is 2.0.
 \[2.0 ÷ 5 = \underline{0.4} \]
 \[20 \text{ tenths} ÷ 5 = 4 \text{ tenths} \]

2. Complete the number sentence. Express the quotient in units and then in standard form.

 a. \(4.2 ÷ 7 = \underline{0.6} \)

 b. \(2.64 ÷ 2 = \underline{1.32} \)
 \[2.64 \text{ ones} ÷ 2 = \underline{1} \text{ ones} + \underline{32} \text{ hundredths} \]
 \[= 1.32 \]

 c. \(12.64 ÷ 2 = \underline{6.32} \)
 \[12.64 \text{ ones} ÷ 2 + \underline{64} \text{ hundredths} ÷ 2 \]
 \[= 6 \text{ ones} + \underline{32} \text{ hundredths} \]
 \[= 6.32 \]
d. \(4.26 \div 6 = \frac{42}{100} \text{ tenths} \div 6 + \frac{6}{100} \text{ hundredths} \div 6\)
 \[= 7 \text{ tenths} + 1 \text{ hundredth}\]
 \[= 0.71\]

e. \(4.236 \div 6 = \frac{4236}{1000} \text{ tenths} \div 6 + \frac{36}{1000} \text{ thousandths} \div 6\)
 \[= 7 \text{ tenths} + 6 \text{ thousandth}\]
 \[= 0.706\]

3. Find the quotients. Then, use words, numbers, or pictures to describe any relationships you notice between each pair of problems and quotients.

 a. \(32 \div 8 = 4\)
 \(3.2 \div 8 = 0.4\)
 The first quotient (4) is 10 times greater than the second quotient (0.4) because the number we started with (32) is 10 times greater than the second number (3.2). They are both divided into 8 equal parts.

 b. \(81 \div 9 = 9\)
 \(0.81 \div 9 = 0.09\)
 81 ones \(\div 9 = 9\) ones
 81 thousandths \(\div 9 = 9\) thousandths

4. Are the quotients below reasonable? Explain your answers.

 a. \(5.6 \div 7 = 0.8\)
 \[50 \text{ tenths} \div 7 = 8 \text{ tenths} \; \text{not} \; 8 \text{ ones} (0.8)\]

 b. \(56 \div 7 = 8\)
 \[56 \text{ ones} \div 7 = 8 \text{ ones} \; \text{not} \; 8 \text{ tenths} (0.8)\]

 c. \(0.56 \div 7 = 0.08\)
 \[50 \text{ hundredths} \div 7 = 8 \text{ hundredths} (0.08)\]
5. 12.48 milliliters of medicine were separated into doses of 4 mL each. How many doses were made?

medicine [4 mL] 12.48 mL

? doses

12.48 ÷ 4 = 12 ones ÷ 4 + 48 hundredths ÷ 4

= 3 ones + 12 hundredths

= 3.12 doses

With 4 mL in each dose, there were 3.12 doses made.

6. The price of milk in 2013 was around $3.28 a gallon. This was eight times as much as you would have probably paid for a gallon of milk in the 1950s. What was the cost for a gallon of milk during the 1950s? Use a tape diagram, and show your calculations.

milk price
2013

$3.28

milk price
1950's

? $0.41

$3.28 ÷ 8

= 32 tenths ÷ 8 + 8 hundredths ÷ 8

= 4 tenths + 1 hundredth

= $0.41

Milk cost $0.41 in the 1950's.